

Axial Piston Variable Pump A2VK

RE 94001/06.10 1/12 Replaces: 07.04

Data sheet

Size 12 to 107 Series 1 and 4 Nominal pressure 250 bar Maximum pressure 315 bar Version for pumping plastic components

Contents

Ordering code for standard program
Technical data
Dimensions size 12
Dimensions size 28
Dimensions size 55
Dimensions size 107
Pressure limiting valve attached
General instructions

2

3

5

6

7

8

9 12

- Variable axial piston pump for pumping and metering polyurethane components
- High metering accuracy and reproducibility of the variable pumped volumes
- Robust manual adjustment via handwheel with integral precision measuring scale
- Operating pressure up to 250 bar
- Low pulsation of the pumped medium
- Pump components are compatible with the pumped media (polyol, isocyanate) due to special pairings of materials and sealing elements
- Low-noise
- Excellent volumetric efficiency for high metering accuracy
- Double shaft seals with buffer fluid ports to guarantee safe operation (and protect the environment)
- With corrosion protection

Note

Size 12 and 28 are in the phase-out program.

Replacement product is the A7VK, see RE 94010.

Ordering code for standard program

				Г	A 0\/'					~	_	-		c/	20
				L	A2V	<u> </u>	IVI			G	P	E	-	50	D2
Axial piston unit															
Variable pump	A2VK]													
		J													
Size															
$rightarrow Displacement V_{g max}$ in cm ³		12	28	55	107										
				٠											
Control device															
Manual adjustment						M	Α								
Operating mode															
Open circuit						C	,]							
Closed circuit						G	i								
Direction of rotation															
Looking onto drive shaft			clockv			R	_								
			anti-cl	ockw	/ise	L									
Series															
		Size	28-10	7		1									
		Size				4	_								
Model															
Enclosed pump						Ģ	i								
Male a strack sea at															
Valve attachment Without valve attached						0									
Pressure limiting valve attached	ed					1	_								
	'														
Drive shaft									 						
Cylindrical with key						P	•								
Swivel angle							. 1								
One-sided						E									
Handwheel assembly versior	n														
Looking onto drive shaft	-	left s	side			1									
			t side			2									
Corrosion-protected version															
						SC)2								

 \bullet = Available \blacktriangle = Phase-out program

Technical data

Fluid

The pump pumps and meters fluids for manufacturing polyurethane (polyol and isocyanate components).

Operating viscosity range

The following limit conditions apply:

ν _{min}	1 mm²/s,
v _{max}	_ 2000 mm²/s

Please contact us if higher values are required.

Operating temperature range

Optimum operating temperature range t_____10-50°C

Maximum operating temperature t_{max}_____ 80°C

The permitted working temperature depends on the lubricity of the fluid. The maximum fluid temperature must not be exceeded even locally (e.g. no more than 5K over the leakage fluid temperature).

Filtering the fluid

The filter should be arranged so that only filtered fluid enters the pump. The finer the filter, the longer the service life of your axial piston pump.

We recommend a filter grad	e η _{abs.} ≤	125 µm
----------------------------	-----------------------	--------

Operating pressure range

Input

Open circuit:	
Max. filling pressure at the port S p _{max abs.}	10 bar
Min. filling pressure at the port S p _{min abs.}	1 bar
T I	

The pump must always be filled completely.

Closed circuit:	
Leakage fluid pressure p _{max abs.}	10 bar
Max. intermittent cumulative pressure A + B p _{max}	250 bar

Output

Maximum pressure at port A or B	
(pressure data according to DIN 24312)	

Nominal pressure p _N	250 bar
Maximum pressure p _{max}	315 bar

Leakage fluid

Max. leakage fluid pressure p_{L max} _____10 bar

In the closed circuit, pump ports A and B are separated from the housing space. The leakage fluid must be removed via port T_1 or T_2 using a separate line.

In the open circuit, the suction port S is connected to the housing space. There is no need for a line for the leakage fluid. Ports T_1 and T_2 are plugged. The filling pressure at port S acts on the shaft sealing ring via the housing space.

The service life of the shaft sealing ring decreases as the pressure of the leakage fluid or the filling pressure at port S increases.

Through put flow

Swivel direction	Direction of "clockwise"	. orallon	Direction of "anti-clockv	
	open circuit	closed circuit	open circuit	closed circuit
clockwise	S to B A plugged	A to B	S to A B plugged	B to A
anti- clockwise	S to A B plugged	B to A	S to B A plugged	A to B

Installation position

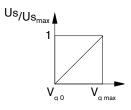
Any. The pump must be completely filled with fluid. If installed with the shaft pointing upwards, the top leakage fluid port must be connected to the housing for both types of circuit to ensure that the housing is vented in the vicinity of the bearing.

Preferred installation position: drive shaft horizontal

The adjustment display in the handwheel can only be guaranteed to work if the adjusting spindle is installed -30° to $+30^{\circ}$ from the horizontal.

Technical data

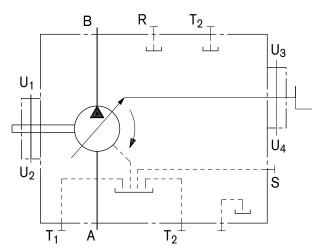
Table of values

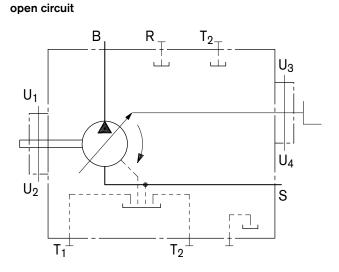

Size				12	28	55	107
Displacement	V _{g max}		cm ³	11.6	28.1	54.8	107
Flow ¹) at speed n	q _{v max}	n = 735 rpm	l/min	8.3	20	39.1	76.3
		n = 970 rpm	l/min	10.9	26.4	51.6	100.7
		n = 1450 rpm	l/min	16.3	39.5	77.1	150.5
		n = 1800 rpm	l/min	20.3	49.1	95.7	186.8
Power	P _{max}	n = 735 rpm	kW	3.4	8.3	16.3	31.8
at $\Delta p = 250$ bar and speed n		n = 970 rpm	kW	4.5	11	21.5	41.9
		n = 1450 rpm	kW	6.8	16.5	32.1	62.7
		n = 1800 rpm	kW	8.4	20.4	39.9	77.8

1) Includes 3% loss of displacement

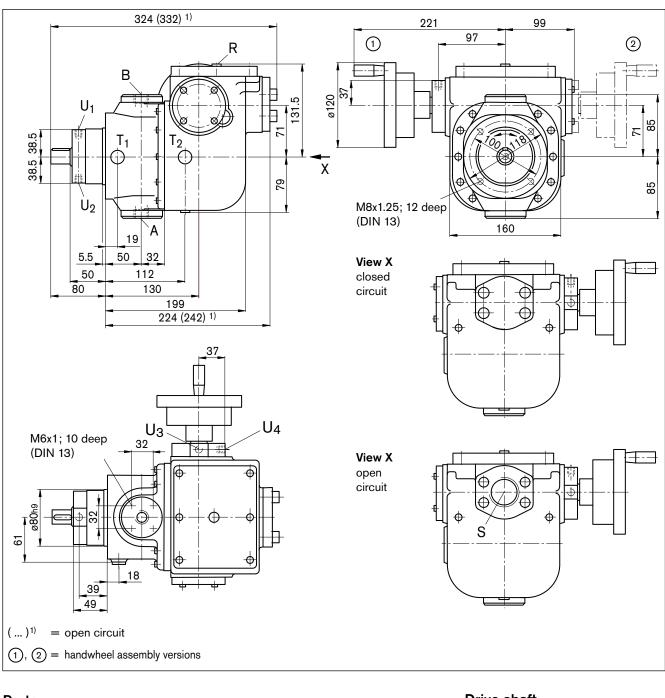
Control unit MA

Turning the handwheel turns a self-locking threaded spindle which steplessly adjusts the pump's swivel section, and thus the volumetric flow in the range from V_{g 0} to V_{g max}.


Characteristic

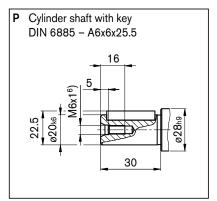


	V _{q0}	V _{q max}			
Control unit MA		12	28	55	107
Handwheel turns from V _{g 0} to V _{g max}	Us	10.6	12.7	16	13.4
Max. handwheel adjustment force F _{max}	Ν	70	70	80	120
Mass, approx. (pump with control unit)	kg	19	36	64	117

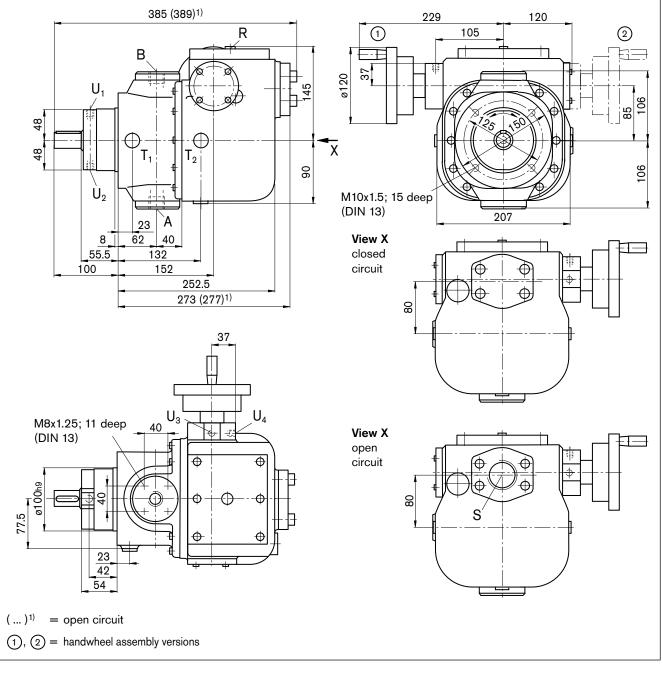

Circuit diagram

closed circuit

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Ports

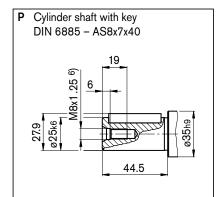
³) plugged
 ⁴) DIN 3852


5) DIN ISO 228

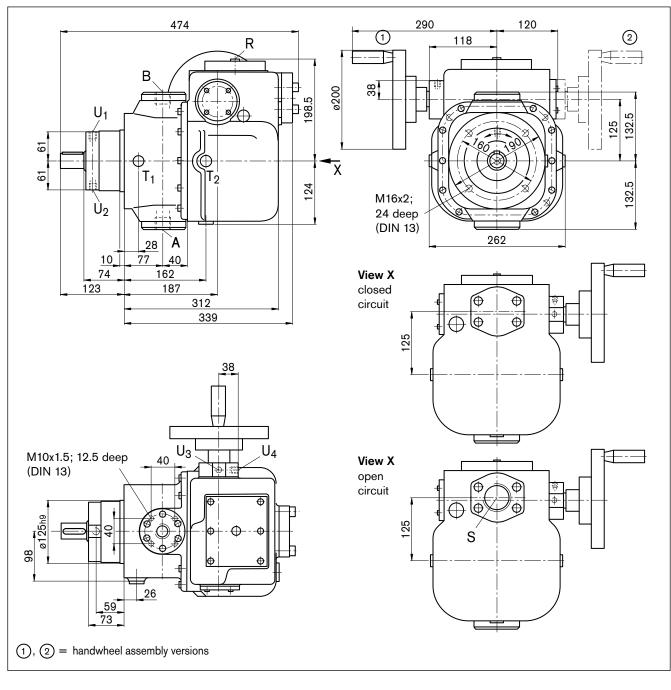
⁶) centering hole to DIN 332

			Tightening torque, max.
А, В	Service line ports	M22x1.5 ⁴)	210 Nm
S	Suction port ²)	G1 1/4 ⁵)	720 Nm
T_{1}, T_{2}	Leakage port 3)	M12x1.5 ⁴)	50 Nm
R	Air bleed ³)	M12x1.5 ⁴)	50 Nm
U_1 - U_4	Ports for buffer fluid	M10x1; 8 deep ⁴)	30 Nm
²) plugged	d in the closed circuit		

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Ports

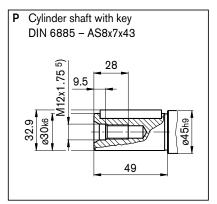
²) plugged in the closed circuit


- ³) plugged
- 4) DIN 3852
- 5) DIN ISO 228
- ⁶) centering hole to DIN 332

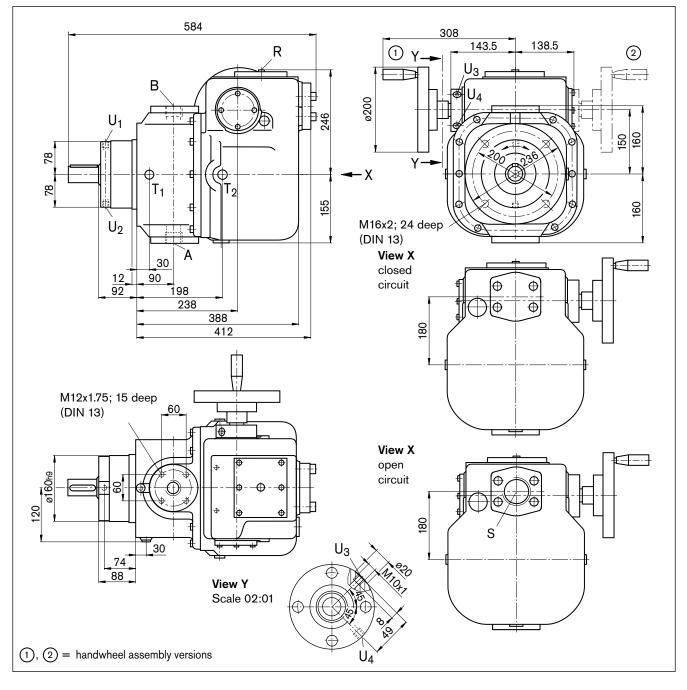
Tightening torque, max. 330 Nm

960 Nm 100 Nm 50 Nm 30 Nm

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Ports

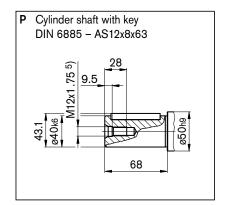
²) plugged
 ³) DIN 3852


4) DIN ISO 228

⁵) centering hole to DIN 332

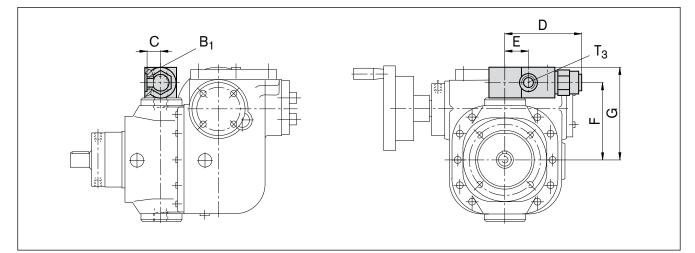
			Tightening torque, max.	
A, B	Service line ports	M33x2 ³)	540 Nm	
S	Suction port ¹)	G2 ⁴)	1200 Nm	
T_1, T_2	Leakage port ²)	M18x1.5 ³)	140 Nm	
R	Air bleed ²)	M12x1.5 ³)	50 Nm	
U_1 - U_4	Ports for buffer fluid	M10x1; 8 deep ³)	30 Nm	
¹) plugge	ed in the closed circuit			

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Ports

			Tightening torque, max.	
A, B	Service line ports	M42x2 ³)	720 Nm	
S	Suction port ¹)	G2 1/2 ⁴)	2000 Nm	
T_{1}, T_{2}	Leakage port ²)	M18x1.5 ³)	140 Nm	
R	Air bleed ²)	M12x1.5 ³)	50 Nm	
U_1 - U_4	Ports for buffer fluid	M10x1; 8 deep ³)	30 Nm	

1) plugged in the closed circuit


- ²) plugged
- ³) DIN 3852
- 4) DIN ISO 228

⁵) centering hole to DIN 332

Pressure limiting valve attached

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Size	С	D	E	F	G	Service line port B ₁ ¹)	Tightening torque, max.	Return port T ₃ ¹)	Tightening torque, max.
12	25	109	32	108	131	M22x1.5; 14 deep	210 Nm	M18x1.5; 12 deep	140 Nm
28	26.5	121	40	131	156	M27x2; 16 deep	330 Nm	M22x1.5; 14 deep	210 Nm
55	31.5	133.5	46	160.5	188.5	M33x2; 18 deep	540 Nm	M27x2; 16 deep	330 Nm
107	38.5	174	58	192.5	225	M42x2; 20 deep	720 Nm	M33x2; 20 deep	540 Nm

¹) DIN 3852

Notes

Notes

General instructions

- The pump A2VK is designed for use in an open or closed circuit.
- Configuration, assembly, commissioning of the pump must be performed by trained and qualified personnel.
- The operating and function ports are designed exclusively for connecting fluid lines.
- Tightening torques: The tightening torques specified in this data sheet are maximum values and may not be exceeded (maximum value for screw thread). Manufacturer specifications for the max. permissible tightening torques of the used fittings must be observed!

For DIN 13 fastening screws we recommend checking the tightening torque individually according to VDI 2230 Edition 2003.

- The housing temperature rises during and shortly after operation. Take suitable safety precautions (e.g. wear protective clothing).
- Observe the specified data and instructions.
- During maintenance and disposal, please note that the fluids used are potentially harmful to the health. The instructions issued by the fluid manufacturer must be followed.

Bosch Rexroth AG Hydraulics Axial Piston Units Glockeraustrasse 2 89275 Elchingen, Germany Telephone +49 (0) 73 08 82-0 Fac +49 (0) 73 08 72 74 info.brm-ak@boschrexroth.de www.boschrexroth.com/axial-piston-pumps © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.