
Dual cross over relief, pilot operated with anti-cavitation check valves

RE 18308-24

Edition: 03.2016

Replaces: 04.2010

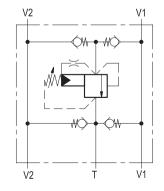
A-VAA-CC-150

Description

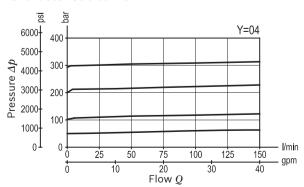
It relieves the inlet pressure from either one of the supply lines and it protects motors or hydraulic actuators from shocks or pressure surges induced by changes in direction or by sudden stops. The relief is of the cross over type, and exhausted oil is transferred through the check valve to the low pressure line (from V1 into V2, or vice-versa) to prevent cavitation. An extra tank port (T), with 2 additional checks, allows to make up for any drain or exhausted flow and ensures that the motor is always full.

Technical data

08.81.11 - X - Y - Z


Max. operating pressure	350 bar (5000 psi)
Max. flow	150 l/min. (40 gpm)
Leakage at max. relief setting	0.10 l/min. (0.03 gpm)
Weight	see "Dimensions"
Manifold material	Zinc plated steel
The pilot operated relief cartridge provides very "flat" curves up to	

The pilot operated relief cartridge provides very


For best protection, the valve should be fitted as close to the actuator as possible.

Fluid	Mineral oil (HL, HLP) according DIN 51524
Fluid temperature range	-30 °C to 100 (-22 to 212 °F)
Viscosity range	10 to 500 mm ² /s (cSt)
Recommended degree of fluid contamination	Class 19/17/14 according to ISO 4406
Other technical data	see data sheet 18350-50

Note: for applications outside these parameters, please consult us.

Characteristic curve

2

03

04

05

Ordering code 08.81.11 X Y Z Dual cross over relief, pilot operated with anti-cavitation check valves Adjustments 03 Leakproof hex. socket screw Tar ord Ma

G 1/2

G 3/4

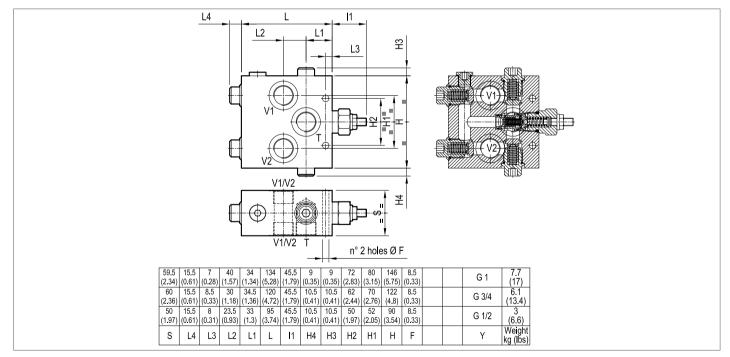
G 1

	SPRINGS		
	Adj. pressure	Pres. increase	Std. setting
	range	bar/turn	Q=5 (I/min)
	bar (psi)	(psi/turn)	bar (psi)
40	35-420	115	350
	(500-6000)	(1668)	(5000)

Tamper resistant cap ordering code 11.04.23.004 Mat. no . R930001411

Preferred types

Туре	Material number
088111030340000	R930004103
088111030440000	R930004104


G 1/2

G 3/4

G 1

Туре	Material number
088111030540000	R930004106

Dimensions

Bosch Rexroth Oil Control S.p.A.

Via Leonardo da Vinci 5

P.O. Box no. 5

41015 Nonantola - Modena, Italy

Tel. +39 059 887 611 Fax +39 059 547 848

compact-hydraulics-pib@boschrexroth.com www.boschrexroth.com/compacthydraulics

® This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth Oil Control S.p.a.. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging. Subject to change.